Heavier- and lighter-load isolated lumbar extension resistance training produce similar strength increases, but different perceptual responses, in healthy males and females

Objectives: Muscles dominant in type I muscle fibres, such as the lumbar extensors, are often trained using lighter loads and higher repetition ranges. However, literature suggests that similar strength adaptations can be attained by the use of both heavier- (HL) and lighter-load (LL) resistance training across a number of appendicular muscle groups. Furthermore, LL resistance exercise to momentary failure might result in greater discomfort.
Design: The aims of the present study were to compare strength adaptations, as well as perceptual responses of effort (RPE-E) and discomfort (RPE-D), to isolated lumbar extension (ILEX) exercise using HL (80% of maximum voluntary contraction; MVC) and LL (50% MVC) in healthy males and females.
Methods: Twenty-six participants ( n = 14 males, n = 12 females) were divided in to sex counter-balanced HL (23 ± 5 years; 172.3 ± 9.8 cm; 71.0 ± 13.1 kg) and LL (22 ± 2 years; 175.3 ± 6.3 cm; 72.8 ± 9.5 kg) resistance training groups. All participants performed a single set of dynamic ILEX exercise 1 day/week for 6 weeks using either 80% (HL) or 50% (LL) of their MVC to momentary failure.
Results: Analyses revealed significant pre- to post-intervention increases in isometric strength for both HL and LL, with no significant between-group differences ( p > 0.05). Changes in strength index (area under torque curves) were 2,891 Nm degrees 95% CIs [1,612–4,169] and 2,865 Nm degrees 95% CIs [1,587–4,144] for HL and LL respectively. Changes in MVC were 51.7 Nm 95% CIs [24.4–79.1] and 46.0 Nm 95% CIs [18.6–73.3] for HL and LL respectively. Mean repetitions per set, total training time and discomfort were all significantly higher for LL compared to HL (26 ± 8 vs. 8 ± 3 repetitions, 158.5 ± 47 vs. 50.5 ± 15 s, and 7.8 ± 1.8 vs. 4.8 ± 2.5, respectively; all p < 0.005).
Conclusions: The present study supports that that low-volume, low-frequency ILEX resistance exercise can produce similar strength increases in the lumbar extensors using either HL or LL. As such personal trainers, trainees and strength coaches can consider other factors which might impact acute performance (e.g. effort and discomfort during the exercise). This data might prove beneficial in helping asymptomatic persons reduce the risk of low-back pain, and further research, might consider the use of HL exercise for chronic low-back pain symptomatic persons.

Leia o artigo completo aqui